
©
20

10
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature GeNetics  ADVANCE ONLINE PUBLICATION �

t e c h n i c a l  r e p o rt s

Mixed linear model (MLM) methods have proven useful in 
controlling for population structure and relatedness within 
genome-wide association studies. However, MLM-based 
methods can be computationally challenging for large datasets. 
We report a compression approach, called ‘compressed MLM’, 
that decreases the effective sample size of such datasets 
by clustering individuals into groups. We also present a 
complementary approach, ‘population parameters previously 
determined’ (P3D), that eliminates the need to re-compute 
variance components. We applied these two methods both 
independently and combined in selected genetic association 
datasets from human, dog and maize. The joint implementation 
of these two methods markedly reduced computing time and 
either maintained or improved statistical power. We used 
simulations to demonstrate the usefulness in controlling 
for substructure in genetic association datasets for a range 
of species and genetic architectures. We have made these 
methods available within an implementation of the software 
program TASSEL.

Although genome-wide association studies (GWAS) have the poten-
tial to pinpoint genetic polymorphisms underlying human diseases 
and agriculturally important traits, false discoveries are a major 
concern1 and can be partially attributed to spurious associations 
caused by population structure and unequal relatedness among 
individuals in a given cohort. Population stratification was initially 
addressed using general linear model (GLM)-based methods such 
as structured association2, genomic control3 and family-based tests 
of association4. The introduction of MLM approaches has more 
recently been demonstrated as an improved method to simulta-
neously account for population structure and unequal relatedness 
among individuals5.

In the MLM-based methods, population structure2,6 is fit as a fixed 
effect, whereas kinship among individuals is incorporated as the vari-
ance-covariance structure of the random effect for the individuals. 

Regardless of the applied statistical method, GWAS require large sample  
sizes to achieve sufficient statistical power7, especially in order to 
detect the small effect polymorphisms that underlie most complex 
traits8. For the MLM approach, datasets with these large sample sizes 
create a heavy computational burden because the computing time for 
solving a MLM increases with the cube of the number of individuals 
fit as a random effect. The earliest effort to reduce the size of the ran-
dom effect in an MLM can be traced back to the sire model approach 
used in animal breeding9–12, which replaces an individual’s genetic 
effect with that of its sire. Consequently, the sire-model approach 
requires pedigrees, which are not always available, and which in par-
ticular are often not available in plant studies. Even with available 
pedigrees, the use of a marker-based kinship is preferred because 
of its higher accuracy13,14. The computing time is further increased 
because iteration is needed to estimate population parameters, such 
as variance components15, for each tested marker. Even though a 
number of studies have sought to improve the speed of the iteration 
process, including development of the recent efficient mixed-model 
association (EMMA) algorithm16, solving an MLM for a large number 
of individuals and markers remains computationally intensive. To 
address this issue, a residual approach was proposed based on a two-
step strategy17. The first step optimized a reduced MLM with the 
genetic marker effect excluded. In the second step, the residual from 
the reduced MLM was fit as the dependent variable to test each marker 
in a GLM. Because the random genetic effect was not fit in the second 
step, iteration was not required when testing markers. This residual 
approach can be performed much faster than the one-step MLM with 
full optimization for all unknown parameters, but it has a statistical 
power equivalent to that of the full optimization approach only for 
traits with low heritability. We propose here methods to reduce the 
size of the random genetic effect in the absence of pedigree informa-
tion and eliminate iterations to re-estimate the population parameters 
for each marker without compromising statistical power. We show 
that the joint use of these two methods greatly reduces computing 
time and maintains or even increases statistical power.
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The total computing time for a GWAS with a standard MLM is 
mpn3, where m is the total number of markers, p is the number of 
iterations to solve the MLM and n is the total number of individu-
als assessed. Conducting a GWAS with a large sample size becomes 
computationally intensive because each iteration takes an amount of 
time that is proportional to the cube of the number of individuals in 
the random effect15,18. An approach for reducing this computational 
burden is to reduce the size of the random effect. We achieve this by 
substituting n individuals with a smaller number of groups, s (s  ≤ n), 
clustered based on the kinship among individuals. Consequently, the 
kinship between pairs of groups replaces the kinship between pairs of 
individuals for the random effect of an MLM. If c = n/s is the average 
number of individuals per group, referred to hereafter as the compres-
sion level, this approach will reduce computing time by a factor of c3. 
We named this approach compression, referring to how the random 
effect in a MLM is compressed from individuals to groups. An MLM 
that uses compression is called a compressed MLM.

Because in this method individuals are clustered into groups based 
on kinship estimates, we consider the compressed MLM to be an 
extension of the pedigree-based sire model9–12 with notable advance-
ments. The groups used in the compressed MLM can be clustered 
from kinship calculated from either markers or pedigrees. In addition, 
the number of groups in the compressed MLM can vary from n to 1, 
whereas the number of sires is fixed in the traditional method for a 
particular pedigree. This flexibility in the number of groups allows 
the accuracy of the group mean and number of groups to be opti-
mized, which is a method similar to choosing the numbers of sires 
and progeny per sire to maximize genetic improvement in a breeding 
program19–21. The ability to optimize the number of groups could 
lead to increased statistical power in GWAS.

Compressed MLM crosses the boundary between GLM and MLM 
because GLM and MLM can both be considered extreme cases of 
compressed MLM (Fig. 1). MLM is equivalent to compressed MLM 
when each individual is treated as a single group (that is, s = n), 
whereas GLM is equivalent to compressed MLM when all individu-
als are in one group (s = 1). The latter causes the random effect to 
have a single level, thereby preventing the separate estimation of the 
random effect and residual variance components. In addition, the 
random effect and the overall mean are linearly dependent and thus 
cannot be estimated separately.

To further reduce computing time, we developed the P3D algo-
rithm, a two-step approach that does not require iteration to estimate 
population parameters such as genetic variance and residual vari-
ance for each marker. The first step in the algorithm is to optimize 
the reduced MLM with the marker effect excluded. If compression is 
incorporated in the model, the population parameters also include 
the clustering algorithm and compression level. Taken from a similar 
approach that was applied to marker-assisted breeding22, the second 
step of the algorithm continues to fit the random genetic effect in the 
MLM with the previously determined population parameters fixed 
as empirical Bayesian priors23. Subsequently, the non-population  
parameters, including the marker effect and the random genetic effect, 
are estimated for each marker.

P3D is similar to the two-step residual approach17, but it also has 
notable differences. The residual approach fits the residuals from the 
reduced MLM as the dependent variable in the second step, whereas 
the original phenotype is fit as the dependent variable in the second 
step of P3D. In addition, the residual approach does not fit the ran-
dom genetic effect and uses a GLM when testing markers, whereas 
P3D fits the random genetic effect with previously determined popu-
lation parameters fixed in an MLM framework.

To evaluate compression and P3D relative to the standard MLM 
with full optimization of all unknown parameters for each marker, we 
conducted a series of association studies between observed or simu-
lated phenotypes and observed markers in human, dog and maize. For  
the observed phenotypes, we evaluated the fit of compressed MLMs 
at different compression levels and with different clustering algo-
rithms. Under the assumption that there is no association between 
the observed phenotypes and the observed genetic markers, we investi-
gated the distribution of false positives by using the compressed  
MLM. The simulated phenotypes were used to evaluate statistical 
power by considering the potential true associations between the 
observed phenotypes and the observed markers. The simulated pheno-
types were generated from the observed SNPs by adding the genetic 
effects. The SNPs with assigned genetic effects are called quantitative 
trait nucleotides (QTNs). Total number of QTNs, heritability and 
dominance and epistatic effects were varied to validate the robustness 
of P3D for phenotypes with different genetic architectures. We used 
the distribution of the F statistics from the association tests between 
the simulated phenotypes and the non-QTN markers to determine 
an empirical threshold5 at a significance level of 5% (P < 0.05). We 
then calculated the statistical power as the proportion of QTNs with 
F values greater than the thresholds.

RESULTS
Compression
We examined the fit of the compressed MLM on human height with 
eight hierarchical clustering algorithms24,25: unweighted pair group 
method with arithmetic average (UPGMA); unweighted pair-group 
centroid; complete linkage; Lance-Williams flexible-beta method; 
McQuitty’s similarity analysis (weighted pair-group method using 
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Figure 1 The forms of MLM classified by the random effect size and 
types of kinship. The GLM and standard MLM are the two extremes of 
the compressed MLM with the number of groups determined as 1 and n 
(number of individuals), respectively. The sire model is a special case of 
the compressed MLM, with the groups determined as the sires derived 
from pedigrees. Kinship used in Henderson’s MLM15 was calculated from 
the pedigrees. It was extended to marker-based kinship in the unified 
MLM5. The GLM approach appears in many formats in various GWAS, 
including structure association (SA)2, genomic control (GC)3 and the 
quantitative transmission disequilibrium test (QTDT)4. The compressed 
MLM can be flexibly applied to the entire area by varying the number of 
groups (s), including the area investigated previously (shaded area) and 
the area proposed in this study (open area).
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arithmetic averages); weighted pair-group centroid median; single 
linkage (nearest neighbor); and Ward’s method. The fit of each 
model varied considerably with the use of different combinations 
of clustering algorithms and compression levels. For each clustering 
algorithm, at least one compression level had a better fit with the 
data than the standard MLM, with the exception of the unweighted 
and weighted pair-group centroid median algorithms in the human 
dataset (Supplementary Fig. 1). The variation in model fit among 
clustering algorithms suggests that additional research is needed to 
better understand the relationship between clustering algorithms and 
compression levels; however, this is beyond the scope of our study. 
Because UPGMA produced models that were generally equivalent 
to or better than other clustering algorithms, we chose to use that 
in the rest of the work presented here, including the examination 
of model fit for different phenotypes within the same population 
(Supplementary Fig. 2).

Under the assumption that there is no association between the 
observed phenotypes and the tested markers, the P values from the 
association tests should follow a uniform [0,1] distribution. This dis-
tribution is shown in the quantile-quantile plot in Figure 1. Notably, 
compressed MLM controlled the false positive rate better than the 
standard MLM when the compression levels were within the range of 
1.5 to 10 (Fig. 2). At these same compression levels, the compressed 
MLM had a better model fit than the standard MLM when marker 
effects were excluded (the top panel in Fig. 3).

To deal with the risk that reducing the number of false positives 
might affect the ability to detect true positives (that is, statistical 
power), especially in the case of assuming that no association is 
violated, we examined the performance of the compressed MLM by 
simulation studies. After QTN effects were added to the observed 
phenotypes, tests of association between these simulated phenotypes 
and markers showed that the statistical power (that is, the ability 
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Figure 2 Quantile-quantile plots of type I 
error (false positive) rates of association tests 
using the compressed MLM under different 
compression levels. The observed phenotypes 
are height in humans, hip dysplasia (Norberg 
angle) in dogs and flowering time (days to 
pollination) in maize. The distributions of  
P values are shown by plotting the observed  
P values against the cumulative P values in the 
negative log10 scale. Under the assumption that 
this set of genetic markers are unlinked to the 
polymorphism controlling the phenotypes, the 
P values of the association tests have a uniform 
distribution, indicated by the expected diagonal line (Exp)5. A statistical approach that has a distribution closer to the diagonal line indicates a better 
control for type I errors. The GLM that is equivalent to the compressed MLM at the maximum compression level had the most type I errors. For all the 
species, at least one compression level was found at which the compressed MLM performed better than the standard MLM, which is equivalent to the 
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Figure 3 The performance of the compressed 
MLM under different compression levels 
(horizontal axis). The two extremes of the 
compression level at 1 and n (the number of 
individuals) correspond to the standard MLM 
and the GLM, respectively. Performances 
were examined based on model fit, statistical 
power and computing time (s). The observed 
phenotypes are height in humans, hip 
dysplasia (Norberg angle) in dogs and 
flowering time (days to pollination) in maize. 
Individuals in each of the datasets were 
clustered into groups according to kinship 
by using the UPGMA algorithm implemented 
by proc cluster in SAS26. Model fit was 
evaluated using negative log likelihood 
(–2LL), adjusted Akaike information criterion 
(AICC) and Bayesian information content 
(BIC). Smaller values of –2LL, AICC and BIC 
indicate better fit. The statistical power was 
evaluated for QTNs with different size effect. 
The size of QTN effect is expressed in the 
unit of phenotypic standard deviation (s.d.). 
The average computing time was calculated 
from the observed CPU time for association 
tests on 647 markers in human datasets; 
1,000 markers in dog datasets; and 553 
markers in maize datasets. The computations 
were performed by proc mixed in SAS26 on a 
computer from Dell (Optiplex 755) with two 
physical CPUs (E6850 @ 3.00 GHz) and  
3.25 GB RAM operated under Windows XP.
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to detect the simulated QTN) and model fit followed the same 
trend. The compression level that best fit a model without markers 
also provided the highest power to detect QTN (middle, Fig. 3). 
Compared to the standard MLM, equivalent power was achieved 
using compressed MLM with as much as 5- to 10-fold compres-
sion. The compression level with the best-fitting model increased 
statistical power by 34%, 42% and 20% for human, dog and maize 
for a QTN that explained 0.12, 0.30 and 0.30 units of the phenotypic 
standard deviation, respectively.

P3D
We compared P values obtained from using P3D to P values from using 
full optimization for testing the association between observed phenotypes 
and markers in human, dog and maize. The coefficient of determination 

(r2; Pearson’s correlation coefficient squared) between corresponding 
P values obtained from the two approaches were all greater than 0.96. 
Therefore, we concluded that the association tests obtained from the P3D 
and full optimization methods were approximately the same.

To evaluate the performance of P3D using phenotypes with differ-
ent genetic architectures, we performed association tests on simulated 
phenotypes. Different numbers of QTNs with various levels of her-
itability, dominance and epistatic effects were simulated. Similarly, 
strong correlations (r2 > 0.97) between the corresponding P  values 
from the P3D and full optimization approaches were observed 
for both QTN and non-QTN SNPs (top two panels in Fig. 4 and 
Supplementary Figs. 3 and 4).

For a simulated phenotype with a heritability of 50% and that 
is controlled by 20 QTNs randomly sampled from the SNPs in the 

E  = 0.00
10

r2 = 0.998

8

6

4

2

0
0 2 4 6 8 10

E  = 0.10 E  = 0.20

S
ta

tis
tic

al
 p

ow
er

 
P

3D
 P

 v
al

ue
 (

–l
og

) 
on

 n
on

-c
au

sa
l S

N
P

P
3D

 P
 v

al
ue

 (
–l

og
) 

on
 Q

T
N

 

Full OPT P value (–log)

25
r2 = 0.995

20

15

10

5

0
0 5 10 15 20 25

1.0

0.9

0.7

0.5

0.1

0
0.015 0.025 0.035

Full OPT
P3D

0.6

0.4

0.3

0.2

0.8

25
r2 = 0.996

20

15

10

5

0
0 5 10 15 20 25

25
r2 = 0.995

20

15

10

5

0
0 5 10 15 20 25

25
r2 = 0.995

20

15

10

5

0
0 5 10 15 20 25

E  = 0.05
10

r2 = 0.998

8

6

4

2

0
0 2 4 6 8 10

10
r2 = 0.998

8

6

4

2

0
0 2 4 6 8 10

10
r2 = 0.998

8

6

4

2

0
0 2 4 6 8 10

Proportion of variance explained by QTN

Full OPT
P3D

Full OPT
P3D

1.0

0.9

0.7

0.5

0.1

0
0.015 0.025 0.035

0.6

0.4

0.3

0.2

0.8

1.0

0.9

0.7

0.5

0.1

0
0.015 0.025 0.035

0.6

0.4

0.3

0.2

0.8

1.0

0.9

0.7

0.5

0.1

0
0.015 0.025 0.035

Full OPT

P3D

0.6

0.4

0.3

0.2

0.8

Figure 4 The P values and statistical power of association tests obtained by using the one-step MLM with the full optimization (full OPT) for all 
unknown parameters compared to P3D on a maize phenotype simulated with different epistatic effects (E). The phenotype was controlled by 20 QTNs, 
which were randomly assigned to the SNPs from the maize dataset5. Heritability was defined as the proportion of additive genetic variance over the total 
variance (the sum of additive genetic variance, epistatic variance and residual variance) and was set at 0.5. Because all maize used here belonged to 
inbred lines, no dominance effect was included. The experiment was repeated 1,000 times. For each replicate, the number of non-causal SNPs that 
were randomly sampled was the same as the number of causal QTNs. The top two panels display the P values using the full OPT (x axis) and P3D (y axis).  
Each dot represents a test on a non-causal SNP (top) and a causal QTN (middle). The P values from P3D are highly correlated with the ones from the 
full OPT for the non-causal SNPs and causal QTNs (r2 > 99%). The empirical statistical power for detecting the causal QTNs is displayed (bottom) as a 
function of the proportion of the total variation explained (x axis). The P3D approach and the full OPT had approximately the same statistical power for 
detecting the causal QTNs.
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human dataset, we used four compression levels. At each compression 
level, association tests were performed using both the P3D and full 
optimization approach. Strong correlations between the correspond-
ing P values from P3D and the full optimization were also observed 
(r2 > 0.99) for both QTN and non-QTN SNPs across the different 
compression levels (top two panels in Supplementary Fig. 5).

We used the distribution of the F statistics for the non-QTN SNPs 
to derive the empirical threshold for evaluating F values at each 
compression level. We calculated the empirical statistical power as 
the proportion of QTNs with F values greater than the threshold  
corresponding to a significance level of 5% (P < 0.05). The empirical 
statistical power of the P3D and full optimization approaches were 
approximately the same in all tested scenarios (bottom panels in  
Fig. 4 and Supplementary Figs. 3–5).

DISCUSSION
Compression decreases computing time in proportion to the inverse 
of the cube of the compression level. For instance, a compression 
level of 2 will reduce the computing time by about 87%. The stand-
ard MLM with each individual as a single group has a compression 
level of 1 and requires the most computing time. The GLM, equiva-
lent to the highest compression level with all individuals assigned to 
a single group, requires the least computing time. In our analyses, 
both model fit and statistical power improved as the compression 
level increased from one. After reaching the optimum compression 
level, further compression reduced model fit and statistical power, 
which eventually became the same as the power with the GLM at the  
maximum compression.

The fit of the reduced model (that is, the model without markers) 
under different compression levels followed the same trend as the 
statistical power of the full model for testing markers. Because the 
reduced model did not include marker effects, the computing time 
required to find the compression level with the best-fitting model 
was independent of the number of markers. For these reasons, the 
P3D model used an efficient strategy that determined the optimal 
clustering algorithm and compression level only once.

Similar to the residual approach, P3D eliminates the need to esti-
mate population parameters separately for every marker. The advan-
tage of P3D is that it does not lower statistical power regardless of the 
genetic architecture of the phenotypes. The P3D method works well 
for different numbers of QTNs and with various levels of heritability, 
dominance or epistatic effects.

Compressed MLM and P3D can be applied either separately or 
jointly and can also be used in combination with other approaches, 
such as the EMMA algorithm, to speed up the iteration process in the 
first step of P3D. The compressed MLM improves both computing 
speed and statistical power, whereas P3D improves computing speed 
without sacrificing statistical power. In addition, compressed MLMs 
can be applied at various compression levels. For an analysis in which 
statistical power is the top priority, the compression level with the best 
model-fit should be chosen; otherwise, a higher compression level 
may be chosen to reduce computing time. It should be noted that no 
trend has been identified to determine the compression level with 
the best model-fit across different datasets. The compression level 
that generated the best model-fit varied among phenotypes in the 
same population when the same kinship was used (Supplementary 
Fig. 2). Thus, for each new study, the compression level needed to be 
optimized using the reduced MLM.

The theoretical computing time reduction is faster by a factor of pc3 
for the joint use of compressed MLM and P3D, where p is the number 
of iterations and c is the compression level. When using proc mixed 

and proc cluster in SAS26 on the three datasets, we showed that the 
computing time for the human dataset (largest sample size) decreased 
19-fold with compressed MLM alone and 877-fold with compres-
sion with P3D at the compression level with the greatest statistical 
power (Fig. 3, bottom). Choosing a compression level that had power 
equivalent to that of the standard MLM reduced the computing time 
even more: computing time was 103-fold faster with compression 
alone and 7,582-fold faster with compression with P3D, respectively. 
For the human dataset with 1,315 individuals, the standard MLM (no 
compression, no P3D) took 821 s to screen one marker. (Fig. 3) At  
this speed, it would take 9,502 d (26 years) to analyze a GWAS with  
1 million markers. The current methods (compression with P3D) took 
0.34 s to screen a marker at the compression level of 3.8, which showed 
the highest statistical power, and at this speed, it would take only 2.7 d 
to screen one million markers. The increased speed is even more impor-
tant for larger datasets (for example, one containing 5,000 individuals).  
This suggests that current GWAS datasets on several thousand of 
individuals at 500,000–1,000,000 markers could be analyzed by our 
methods within several days. We have made these methods available 
within an implementation of the software program TASSEL27.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Standard MLM. A standard MLM for GWAS can be written by extending the 
notation of Henderson15 as follows: 

y v u e= + + +W X Z

where y is a vector of a phenotype;  and  are unknown fixed effects repre-
senting marker effects and non-marker effects, respectively; and u is a vec-
tor of size n (number of individuals) for unknown random polygenic effects 
having a distribution with mean of zero and covariance matrix of G = 2K sa

2,  
where K is the kinship (co-ancestry) matrix with element kij (i,j = 1,2,…,n) 
calculated from either a set of genetic markers or pedigrees and sa

2 is an 
unknown genetic variance. W, X and Z are the incidence matrices for v, β and u,  
respectively, and e is a vector of random residual effects that are normally 
distributed with zero mean and covariance R = I se

2, where I is the identity 
matrix and se

2 is the unknown residual variance. The null hypothesis for the 
association test that is v = 0 and the alternative hypothesis is that v ≠ 0. The 
test of the null hypothesis can be performed by either an F test or χ2 test after 
the maximization of the following likelihood: 

L( | , , , , )y v ub s sa e
2 2

Compression. The form of the compressed MLM is the same as equation (1). 
The difference in content is that individuals in u are replaced by their corre-
sponding groups, and kinship among individuals (K) is replaced by the kinship 
among groups (k), which is defined as k k= { }ij , where i,j = 1 to s, and where 

k average k
t

ij
h i j

ht=
∈ ∈,

( )

Under the compressed MLM, the likelihood (L) is as follows: 

L y( | , , , , , )v ub s sa e C2 2

where C is the clustering results after using a clustering algorithm with s groups 
(where s = 1,2, …, n).

P3D. The first step of P3D is to determine population parameters, including 
genetic variance (sa

2), residual variance (se
2) and clustering result (C), by 

maximizing the following likelihood: 

L y( | , , , , )b s su a e C2 2

Then, with the population parameters fixed as empirical Bayesian priors23, 
the non-population parameters (v, β and u) are optimized for each marker 
by maximizing the following likelihood: 

L y( | , , , , )v ub s sa e C2 2
Ŝ Ŝ Ŝ

Equation (6) is maximized by solving equation (1) only once (no iteration) 
while holding those population parameters constant.

Observed data. We examined three genetic association datasets from 
human, dog and maize. Each dataset contained phenotype data and a set of  
genetic markers.

The human dataset was collected from 1,315 adult individuals (specifically, 
European Americans over 17 years old) who participated in the Genetics of 
Lipid Lowering Drugs and Diet Network (GOLDN) study28. There were 637 
genetic markers (388 microsatellite, or simple sequence repeat, markers and 
259 SNP markers) scored on these individuals. All multiallelic simple sequence 
repeat markers were converted into biallelic markers by collapsing alleles into 
two states: the major allele and all other alleles. Measured phenotypes included 
height, physical activity, and serum triglyceride and cholesterol levels. Age and 
sex were also recorded for each individual. A prior study28 found no significant 
population structure in this population and no statistically significant associa-
tion between height and the genetic markers.

The dog dataset was based on 292 dogs from two breeds (Labrador 
retriever and greyhound) and their crosses (F1, F2 and two backcrosses). 
Hip dysplasia was indicated by Norberg angle measured on both the left and 
right sides. The lowest hip score (the minimum between the left and right 
measurements) was used in the analysis29. All dogs were genotyped with 
23,500 SNPs at genome-wide coverage, of which 1,000 SNPs were randomly 
sampled for this study.

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

(6)(6)

The maize dataset was composed of phenotype (flowering time scored 
as days to pollination), genotype (553 SNPs) and population structure  
(Q matrix) in 277 inbred lines5. No statistically significant association was 
found between the genetic markers and flowering time. This dataset is down-
loadable as a tutorial dataset of the TASSEL software package27.

Simulation schemes. Two schemes were employed to simulate phenotypes 
each for the examination of compressed MLM and P3D. In both schemes, 
we used SNP marker data from the human, dog and maize datasets. Also, 
in each scheme, the population structure effect and impact of kinship  
were retained.

Scheme 1 was to add additional QTN effects to an observed phenotype5. 
This scheme was used to evaluate the compressed MLM approach on pheno-
types with the original genetic architecture being retained. The added QTN 
effect contributed to only a small proportion of variation in that phenotype 
(0.03%–6.00%).

The QTN effect was represented in the unit of phenotypic standard 
deviation (k). The percentage of the total variation explained by the QTN 
(π) is a function of k and sample frequency (f) of the polymorphism at  
the QTN, defined as 1/(1+1/f (1 – f)k2)30. Larger effects (a maximum of  
k = 0.5) were added for the dog and maize datasets, in which the sample 
sizes were smaller. Smaller effects (a maximum of k = 0.2) were added to 
the human dataset, which had a larger sample size sufficient to allow a small 
QTN effect to be detected. For a QTN with the largest effect (k = 0.5), the 
percentage of the total variation explained reaches a maximum value of 
5.88% when f = 0.5. To facilitate comparison between datasets, we listed  
π at the f = 0.3. The genetic effect was assigned to all SNPs, one at a time, 
to produce replicates across all SNPs.

Scheme 2 was to simulate a phenotype with every known element, including 
the contribution of population structure, genetic effects (additive, dominance 
and epistatic) and residual effect. We used this scheme to examine whether 
P3D could work across traits with different genetic architecture. The general 
equation to simulate a phenotype (y) is as follows:

y = population structure + additive + dominance + epistatic + residual

where ‘population structure’ was based on the first five principal compo-
nents, which were derived from all the genetic markers. The population 
structure explained 1% of the total phenotypic variation for humans, 25% 
for dogs and 25% for maize. ‘Additive’ is the sum of all additive effects 
for a known number of causal QTNs (5 or 20). The distribution of these 
QTN effects followed a geometric series31. The effect of the ith QTN was 
set as ai, where a = 0.92. The proportion of the additive effect was defined 
by the narrow-sense heritability (h2), which is the proportion of additive 
variance over the total variance (sum of additive and non-additive vari-
ances). Non-additive variance (dominance, epistatic and residual) was set to  
Va(1 – h2)/h2, where Va is the additive genetic variance calculated among 
the total additive genetic effects across QTNs for each individual. Two levels 
of heritability were examined (h2 = 0.25 or 0.5). ‘Dominance’ is the sum 
of dominance effects from all QTNs with a dominance effect of dai for 
heterozygotes at the ith QTN, where d is the degree of dominance (d = 0, 
0.25, 0.5 or 1). ‘Epistatic’ is the sum of pairwise interaction effects among all 
QTNs. The magnitude of the epistatic effect is indicated by the proportion 
of total variance explained by the epistatic effect (proportion of variance 
of 0, 0.05, 0.1 and 0.2). The ‘residual’ effect follows a normal distribution 
and has a variance to satisfy the contributions from additive, dominance 
and epistatic effects at the designated level. Simulations of the phenotypes 
were repeated 1,000 times. The non-causal SNPs were randomly sampled 
q times for each replicate, where q was set to the same number of QTN in 
each scenario (q = 5 or 20).

Statistical analysis. Proc mixed in SAS26 was used to solve the MLM  
with variance components estimated by the restricted maximum likeli-
hood algorithm. Model fit was examined with three criteria: negative  
log likelihood, adjusted Akaike information criterion and Bayesian infor-
mation content.

For the analysis of the human dataset, the fixed effects were sex, age and 
the quadratic term of age in the evaluation of the observed phenotypes 

(7)(7)
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and phenotypes simulated under scheme 1. Similarly, breed (or fraction of 
Labrador retriever, for the crosses with greyhound) was the fixed effect in 
the analysis of the dog dataset, and population structure was the fixed effect 
in the analysis of the maize dataset. The first five principal components6 
derived from all genetic markers were fit as fixed effects for the phenotypes 
simulated under scheme 2.

Individuals or their corresponding groups were fit as a random effect. 
The kinship among individuals was estimated from the genetic markers 
by the approach of Loiselle et al.32. The individuals in each dataset were 
grouped based on their kinship by using proc cluster in SAS26. The geno-
typic effect of each genetic marker was fit as a fixed effect, one marker at a 
time. The association tests on the markers’ genotypes were performed by 
conducting F tests.

URLs. Compression and P3D were implemented in SAS (Supplementary Note) 
and TASSEL27 software package. The SAS code, standalone TASSEL program 
and demonstration date are available at http://www.maizegenetics.net/.
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